Learn
In the coming months, we will have a searchable resource library to support your learning. Until then, here are a few items to get you started.
AI and disability, small minorities and outliers
These resources look at how the lack of diversity and inclusion in the collection and design of data sets and machine learning, as well as the embedded biases in AI algorithms, excludes persons with disabilities.
AI Fairness for People with Disabilities: Point of View
A discussion of the challenges persons with disabilities face with current AI systems and the approaches that need to be adopted to ensure fairness in AI development.
Disability, Bias, and AI
A report capturing critical themes and discussions from a workshop at the AI Now Institute at New York University, the NYU Center for Disability Studies.
Toward Fairness in AI for People with Disabilities: A Research Roadmap
Identifies how several AI technologies, such as automated speech recognition tools and language prediction algorithms, may not be useful for persons with disabilities and may discriminate against them.
Work for people with disabilities in data science
A collection of resources about current barriers for working in the data industry that persons with disabilities experience and the importance of having persons with disabilities involved in the development of emerging AI technology.
Making the Future of Work Inclusive of People with Disabilities
A joint publication by Fundación ONCE and the ILO Global Business and Disability Network to connect different areas of debate, looking at the key trends of the future of work from a disability perspective and seeking to identify specific action needed in order to shape the future of work in a more disability-inclusive way.
AI ethics and policy
Features articles and resources about the AI industry that address ethical dilemmas and new developments in policies, data diversity and privacy concerns.
The Current State of Industrial Practice in Artificial Intelligence Ethics
Using survey data from 211 software companies, this article provides needed insight into the current state of AI ethics in the data industry. For practitioners, the data can also serve as a way to benchmark where an organization stands.
Ethics of Artificial Intelligence: Some Ethical Issues and Regulatory Challenges
An overview of ethical issues in AI, including privacy, transparency and bias, and what steps need to be taken to address these issues.
Technical information (for AI experts)
This section focuses on the development of educational strategies, balanced data sets and methodology in AI design.
WeBuildAI: Participatory Framework for Algorithmic Governance
The WeBuildAI team designed, applied and evaluated this social participatory framework for engaging community stakeholders to enable people to create a decision-making algorithm that fits their needs.
Machine Learning Zero to Hero
A YouTube session from Google I/O ’19 that explains machine learning to those with coding experience, including a discussion of the image classification problem and the use of Tensor flow.
Machine Learning Fairness: Lessons Learned
A YouTube video from Google I/O ’19 on machine learning fairness, with examples of lessons learned through their products and research and describes techniques, that enables developers to think proactively about fairness in product development.
Setting Fairness Goals with the TensorFlow Constrained Optimization Library
From Google PAIR, a look at how Google is using Tensorflow to address the issue of fairness in machine learning.
Data Science, Big Data and Statistics
An argument that traditional statistical methods were developed for small data sets and are not suitable for current large and complex data sets.
AI for Accessibility Grants
A Microsoft program that focuses on addressing 3 challenges in AI: employment, daily life, and communication and connection.